Чему равен период свободных колебаний

Чему равен период свободных колебаний

Основные положения:

Колебательное движение – движение, точно или приблизительно повторяющееся через одинаковые промежутки времени.

Колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса, являются гармоническими.

Периодом колебаний Т называется наименьший промежуток времени, по истечение которого повторяются значения всех величин, характеризующих колебательное движение. За этот промежуток времени совершается одно полное колебание.

Частотой периодических колебаний называется число полных колебаний, которые совершаются за единицу времени. .

Циклической (круговой) частотой колебаний называется число полных колебаний, которые совершаются за 2π единиц времени.

, тогда

Гармоническими колебаниями называются колебания, при которых колеблющаяся величина х изменяется с течением времени по закону:

,

где А, ω, φ – постоянные величины.

А > 0 – величина, равная наибольшему абсолютному значению колеблющейся величины х и называется амплитудой колебаний.

Выражение определяет значение х в данный момент времени и называется фазой колебаний.

В момент начала отсчета времени (t = 0) фаза колебаний равна начальной фазе φ0.

Математический маятник – это идеализированная система, представляющая собой материальную точку, подвешенную на тонкой, невесомой и нерастяжимой нити.

Период свободных колебаний математического маятника: .

Пружинный маятник – материальная точка, закрепленная на пружине и способная совершать колебания под действием силы упругости.

Период свободных колебаний пружинного маятника: .

Физический маятник – это твердое тело, способное вращаться вокруг горизонтальной оси под действием силы тяжести.

Период колебаний физического маятника: .

Теорема Фурье: любой реальный периодический сигнал можно представить в виде суммы гармонических колебаний с различными амплитудами и частотами. Эту сумму называют гармоническим спектром данного сигнала.

Вынужденными называют колебания, которые вызваны действием на систему внешних сил F(t), периодически изменяющихся с течением времени.

Сила F(t) называется возмущающей силой.

Затухающими колебаниями называются колебания, энергия которых уменьшается с течением времени, что связано с убылью механической энергии колеблющейся системы за счет действия сил трения и других сил сопротивления.

Если частота колебаний системы совпадает с частотой возмущающей силы, то резко возрастает амплитуда колебаний системы. Это явление называется резонансом.

Распространение колебаний в среде называется волновым процессом, или волной.

Волна называется поперечной, если частицы среды колеблются в направлении, перпендикулярном направлению распространения волны.

Волна называетсяпродольной, если колеблющиеся частицы движутся в направлении распространения волны. Продольные волны распространяются в любой среде (твердой, жидкой, газообразной).

Распространение поперечных волн возможно только в твердых телах. В газах и жидкостях, которые не обладают упругостью формы, распространение поперечных волн невозможно.

Длиной волны называется расстояние между ближайшими точками, колеблющимися в одинаковой фазе, т.е. расстояние, на которое распространяется волна за один период.

,

Скорость волны V – это скорость распространения колебаний в среде.

Период и частота волны – период и частота колебаний частиц среды.

Длина волны λ – расстояние, на которое распространяется волна за один период: .

Звук– упругая продольная волна, распространяющаяся от источника звука в среде.

Восприятие звуковых волн человеком зависит от частоты, слышимые звуки от 16 Гц до 20000Гц.

Звук в воздухе – это продольная волна.

Высота тона определяется частотой звуковых колебаний, громкость звука – его амплитудой.

Контрольные вопросы:

1. Какое движение называется гармоническим колебанием?

2. Дайте определения величин, характеризующих гармонические колебания.

3. Каков физический смысл имеет фаза колебаний?

4. Что называется математическим маятником? Каков его период?

5. Что называется физическим маятником?

6. Что такое резонанс?

7. Что называется волной? Дайте определение поперечной и продольной волны.

8. Что называется длиной волны?

9. Каков диапазон частот звуковых волн? Может ли звук распространяться в вакууме?

Выполните задания:

1. Заполните таблицу:

Величина Обозначение Единица измерения Формула
Амплитуда колебаний
Период колебаний: а) математического маятника б) пружинного маятника в) физического маятника
Циклическая частота колебаний
Фаза колебаний
Координата колеблющейся частицы
Длина волны
Скорость волны

2. Решите задачи

1. Чему равно отношение масс двух пружинных маятников , имеющих пружины одинаковой жесткости, если частота .

2. Два маятника за одинаковое время совершают один 30, а второй 40 колебаний. Какова длина каждого маятника, если разность их длин равна 7см?

3. Найти наибольшую скорость движения маятника длиной 3,6 м, отклоненного от положения равновесия на 60°.

Задания для самостоятельной работы:

1. Тело массой 20 г совершает гармонические колебания, описываемые уравнением: . Чему равны амплитуда, частота, циклическая частота, период колебаний, начальная фаза?

Читайте также:  Что такое виртуальная сеть vpn windows 10

Построить график колебаний. Найти: максимальные значения скорости и ускорения, максимальную силу, действующую на точку, полную механическую энергию точки.

Вариант Уравнение колебаний Вариант Уравнение колебании

2. Вдоль упругого шнура распространяется поперечная волна со скоростью V. Период колебаний Т, амплитуда А. Определить длину волны, фазу и смещение х точки, отстоящей на расстоянии у от источника волн в момент времени t.

Вариант
V, м/c
Т, c 1,1 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,2 2,4
А, см 1,5 2,5 3,5 4,5 5,5 6,5
у, м 1,5 1,6 1,8 2,2 2,5 3,6 2,8 3,9
t, c 1,5 2, 2,5 1,1 0,5 1,2 1,4 1,3

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9908 — | 7691 — или читать все.

«Физика — 11 класс»

Уравнение, описывающее процессы в колебательном контуре

Есть колебательный контур, сопротивлением R которого можно пренебречь.

Уравнение, описывающее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии.
Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

Полная энергия не меняется с течением времени, если сопротивление R контура равно нулю, тогда производная полной энергии по времени равна нулю.
Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Физический смысл вышеприведенного уравнения состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля.
Знак «—» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

После вычисления производных в уравнении, получается

Производная заряда по времени представляет собой силу тока в данный момент времени:

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени.
Тогда основное уравнение, описывающее свободные электрические колебания в контуре:

Полученное уравнение ничем, кроме обозначений, не отличается от уравнения, описывающего колебания пружинного маятника.

Период свободных колебаний в контуре

Формула Томсона
В основном уравнении коэффициент представляет собой квадрат циклической частоты для свободных электрических колебаний:

Период свободных колебаний в контуре, таким образом, равен:

Эта формула называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее впервые вывел.

Период свободных колебаний зависит от L и С.
При увеличении индуктивности L ток медленнее нарастает со временем и медленнее падает до нуля.
А чем больше емкость С, тем большее время требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока.

Координата при механических колебаниях изменяется со временем по гармоническому закону:

Заряд конденсатора меняется с течением времени по такому же закону:

где
qm — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:

где
Im = qmω — амплитуда колебаний силы тока.
Колебания силы тока опережают по фазе на колебания заряда.

Точно так же колебания скорости тела в случае пружинного или математического маятника опережают на колебания координаты (смещения) этого тела.

В действительности, из-за неизбежного наличия сопротивления электрической цепи, колебания будут затухающими.
Сопротивление R также будет влиять и на период колебаний, чем больше сопротивление, тем бо́льшим будет период колебаний.
При достаточно большом сопротивлении колебания совсем не возникнут.
Конденсатор разрядится, но перезарядки его не произойдет, энергия электрического и магнитного полей перейдет в тепло.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Что такое период колебаний? Что это за величина, какой физический смысл она имеет и как ее рассчитать? В этой статье мы разберемся с этими вопросами, рассмотрим различные формулы, по которым можно рассчитать период колебаний, а также выясним, какая связь имеется между такими физическими величинами, как период и частота колебаний тела/системы.

Определение и физический смысл

Периодом колебаний называется такой промежуток времени, при котором тело или система совершают одно колебание (обязательно полное). Параллельно можно отметить параметр, при выполнении которого колебание может считаться полным. В роли такого условия выступает возвращение тела в его первоначальное состояние (к первоначальной координате). Очень хорошо проводится аналогия с периодом функции. Ошибочно, кстати, думать, что она имеет место исключительно в обыкновенной и высшей математике. Как известно, эти две науки неразрывно связаны. И с периодом функций можно столкнуться не только при решении тригонометрических уравнений, но и в различных разделах физики, а именно речь идет о механике, оптике и прочих. При переносе периода колебаний из математики в физику под ним нужно понимать просто физическую величину (а не функцию), которая имеет прямую зависимость от проходящего времени.

Читайте также:  Как менять фон на фотографиях

Какие бывают колебания?

Колебания подразделяются на гармонические и ангармонические, а также на периодические и непериодические. Логично было бы предположить, что в случае гармонических колебаний они совершаются согласно некоторой гармонической функции. Это может быть как синус, так и косинус. При этом в деле могут оказаться и коэффициенты сжатия-растяжения и увеличения-уменьшения. Также колебания бывают затухающими. То есть, когда на систему действует определенная сила, которая постепенно “тормозит” сами колебания. При этом период становится меньше, в то время как частота колебаний неизменно увеличивается. Очень хорошо демонстрирует такую вот физическую аксиому простейший опыт с использованием маятника. Он может быть пружинного вида, а также математического. Это неважно. Кстати, период колебаний в таких системах будет определяться разными формулами. Но об этом чуточку позже. Сейчас же приведем примеры.

Опыт с маятниками

Взять первым можно любой маятник, разницы никакой не будет. Законы физики на то и законы физики, что они соблюдаются в любом случае. Но почему-то больше по душе математический маятник. Если кто-то не знает, что он собой представляет: это шарик на нерастяжимой нити, который крепится к горизонтальной планке, прикрепленной к ножкам (или элементам, которые играют их роль – держать систему в равновесном состоянии). Шарик лучше всего брать из металла, чтобы опыт был нагляднее.

Итак, если вывести такую систему из равновесия, приложить к шару какую-то силу (проще говоря, толкнуть его), то шарик начнет раскачиваться на нити, следуя определенной траектории. Со временем можно заметить, что траектория, по которой проходит шар, сокращается. В то же время шарик начинает все быстрее сновать туда-сюда. Это говорит о том, что частота колебаний увеличивается. А вот время, за которое шарик возвращается в начальное положение, уменьшается. А ведь время одного полного колебания, как мы выяснили ранее, и называется периодом. Если одна величина уменьшается, а другая увеличивается, то говорят об обратной пропорциональности. Вот мы и добрались до первого момента, на основании которого строятся формулы для определения периода колебаний. Если же мы возьмем для проведения пружинный маятник, то там закон будет наблюдаться немного в другом виде. Для того чтобы он был наиболее наглядно представлен, приведем систему в движение в вертикальной плоскости. Чтобы было понятнее, сначала стоило сказать, что собой представляет пружинный маятник. Из названия понятно, что в его конструкции должна присутствовать пружина. И это действительно так. Опять же таки, у нас есть горизонтальная плоскость на опорах, к которой подвешивается пружина определенной длины и жесткости. К ней, в свою очередь, подвешивается грузик. Это может быть цилиндр, куб или другая фигурка. Это может быть даже какой-то сторонний предмет. В любом случае, при выведении системы из положения равновесия, она начнет совершать затухающие колебания. Наиболее четко просматривается увеличение частоты именно в вертикальной плоскости, без всякого отклонения. На этом с опытами можно закончить.

Итак, в их ходе мы выяснили, что период и частота колебаний это две физические величины, которые имеют обратную зависимость.

Обозначение величин и размерности

Обычно период колебаний обозначается латинской буквой T. Гораздо реже он может обозначаться по-другому. Частота же обозначается буквой µ (“Мю”). Как мы говорили в самом начале, период это не что иное, как время, за которое в системе происходит полное колебание. Тогда размерностью периода будет секунда. А так как период и частота обратно пропорциональны, то размерностью частоты будет единица, деленная на секунду. В записи задач все будет выглядеть таким образом: T (с), µ (1/с).

Читайте также:  Схема кронштейна для телевизора

Формула для математического маятника. Задача №1

Как и в случае с опытами, я решил первым делом разобраться с маятником математическим. Подробно вдаваться в вывод формулы мы не будем, поскольку такая задача поставлена изначально не была. Да и вывод сам по себе громоздкий. Но вот с самими формулами ознакомимся, выясним, что за величины в них входят. Итак, формула периода колебаний для математического маятника имеет следующий вид:

Где l – длина нити, п = 3,14, а g – ускорение свободного падения (9,8 м/с^2). Никаких затруднений формула вызывать не должна. Поэтому без дополнительных вопросов перейдем сразу к решению задачи на определение периода колебания математического маятника. Металлический шар массой 10 грамм подвешен на нерастяжимой нити длиной 20 сантиметров. Рассчитайте период колебания системы, приняв ее за математический маятник. Решение очень простое. Как и во всех задачах по физике, необходимо максимально упростить ее за счет отброса ненужных слов. Они включаются в контекст для того чтобы запутать решающего, но на самом деле никакого веса абсолютно не имеют. В большинстве случаев, разумеется. Здесь можно исключить момент с “нерастяжимой нитью”. Это словосочетание не должно вводить в ступор. А так как маятник у нас математический, масса груза нас интересовать не должна. То есть слова о 10 граммах тоже просто призваны запутать ученика. Но мы ведь знаем, что в формуле масса отсутствует, поэтому со спокойной совестью можем приступать к решению. Итак, берем формулу и просто подставляем в нее величины, поскольку определить необходимо период системы. Поскольку дополнительных условий не было задано, округлять значения будем до 3-его знака после запятой, как и принято. Перемножив и поделив величины, получим, что период колебаний равен 0,886 секунд. Задача решена.

Формула для пружинного маятника. Задача №2

Формулы маятников имеют общую часть, а именно 2п. Эта величина присутствует сразу в двух формулах, но разнятся они подкоренным выражением. Если в задаче, касающейся периода пружинного маятника, указана масса груза, то избежать вычислений с ее применение невозможно, как это было в случае с математическим маятником. Но пугаться не стоит. Вот так выглядит формула периода для пружинного маятника:

В ней m – масса подвешенного к пружине груза, k – коэффициент жесткости пружины. В задаче значение коэффициента может быть приведено. Но если в формуле математического маятника особо не разгуляешься – все-таки 2 величины из 4 являются константами – то тут добавляется 3 параметр, который может изменяться. И на выходе мы имеем 3 переменных: период (частота) колебаний, коэффициент жесткости пружины, масса подвешенного груза. Задача может быть сориентирована на нахождение любого из этих параметров. Вновь искать период было бы слишком легко, поэтому мы немного изменим условие. Найдите коэффициент жесткости пружины, если время полного колебания составляет 4 секунды, а масса груза пружинного маятника равна 200 граммам.

Для решения любой физической задачи хорошо бы сначала сделать рисунок и написать формулы. Они здесь – половина дела. Записав формулу, необходимо выразить коэффициент жесткости. Он у нас находится под корнем, поэтому обе части уравнения возведем в квадрат. Чтобы избавиться от дроби, умножим части на k. Теперь оставим в левой части уравнения только коэффициент, то есть разделим части на T^2. В принципе, задачку можно было бы еще немного усложнить, задав не период в числах, а частоту. В любом случае, при подсчетах и округлениях (мы условились округлять до 3-его знака после запятой), получится, что k = 0, 157 Н/м.

Период свободных колебаний. Формула периода свободных колебаний

Под формулой периода свободных колебаний понимают те формулы, которые мы разобрали в двух ранее приведенных задачах. Составляют также уравнение свободных колебаний, но там речь идет уже о смещениях и координатах, а этот вопрос относится уже к другой статье.

Советы для решения задач, связанных с периодом

1) Прежде чем браться за задачу, запишите формулу, которая с ней связана.

2) Простейшие задачи не требуют рисунков, но в исключительных случаях их нужно будет сделать.

3) Старайтесь избавляться от корней и знаменателей, если это возможно. Записанное в строчку уравнение, не имеющее знаменателя, решать гораздо удобнее и проще.

Ссылка на основную публикацию
Часы с функцией диктофона
Классические часы с секундной стрелкой; Цифровые часы (поддержка 12/24ч форматов, для смены формата сделайте двойной тап по цифрам); Диктофон (поддержка...
Формула vlookup на русском
Функция ВПР в Excel позволяет данные из одной таблицы переставить в соответствующие ячейки второй. Ее английское наименование – VLOOKUP. Очень...
Формула в эксель вычитаем проценты
В различных видах деятельности необходимо умение считать проценты. Понимать, как они «получаются». Торговые надбавки, НДС, скидки, доходность вкладов, ценных бумаг...
Часы с которых можно звонить детские
Ребенка, который самостоятельно посещает школу или гуляет с друзьями, подстерегает много опасностей. Решить эту проблему помогут технологичные детские умные часы...
Adblock detector