Числа фибоначчи алгоритм вычисления

Числа фибоначчи алгоритм вычисления

    Задачки, 13 ноября 2016 в 23:43

Задача: посчитать N-е число последовательности, в которой каждый элемент равен сумме двух предыдущих. Такая последовательность называется последовательностью Фибоначчи: 1, 1, 2, 3, 5, 8…

Очень часто на разнообразных олимпиадах попадаются задачи вроде этой, которые, как думается на первый взгляд, можно решить с помощью простого перебора. Но если мы подсчитаем количество возможных вариантов, то сразу убедимся в неэффективности такого подхода: например, простая рекурсивная функция, приведенная ниже, будет потреблять существенные ресурсы уже на 30-ом числе Фибоначчи, тогда как на олимпиадах время решения часто ограничено 1-5 секундами.

Давайте подумаем, почему так происходит. Например, для вычисления fibo(30) мы сначала вычисляем fibo(29) и fibo(28). Но при этом наша программа «забывает», что fibo(28) мы уже вычисляли при поиске fibo(29).

Основная ошибка такого подхода «в лоб» в том, что одинаковые значения аргументов функции исчисляются многократно — а ведь это достаточно ресурсоемкие операции. Избавиться от повторяющихся вычислений нам поможет метод динамического программирования — это прием, при использовании которого задача разбивается на общие и повторяющиеся подзадачи, каждая из которых решается только 1 раз — это значительно повышает эффективность программы. Этот метод подробно описан в нашей статье, там же есть и примеры решения других задач.

Самый просто вариант улучшения нашей функции — запоминать, какие значения мы уже вычисляли. Для этого нужно ввести дополнительный массив, который будет служить как бы «кэшем» для наших вычислений: перед вычислением нового значения мы будем проверять, не вычисляли ли его раньше. Если вычисляли, то будем брать из массива готовое значение, а если не вычисляли — придётся считать его на основе предыдущих и запоминать на будущее:

Читайте также:  Кодировка видео h 264

Так как в данной задаче для вычисления N-ого значения нам гарантированно понадобится (N-1)-е, то не составит труда переписать формулу в итерационный вид — просто будем заполнять наш массив подряд до тех пор, пока не дойдём до нужной ячейки:

Теперь мы можем заметить, что когда мы вычисляем значение F(N), то значение F(N-3) нам уже гарантированно никогда не понадобится. То есть нам достаточно хранить в памяти лишь два значения — F(N-1) и F(N-2). Причём, как только мы вычислили F(N), хранение F(N-2) теряет всякий смысл. Попробуем записать эти размышления в виде кода:

Бывалому программисту понятно, что код выше, в общем-то ерунда, так как cache3 никогда не используется (он сразу записывается в cache2 ), и всю итерацию можно переписать, используя всего одно выражение:

Для тех, кто не может понять, как работает магия с остатком от деления, или просто хочет увидеть более неочевидную формулу, существует ещё одно решение:

Попробуйте проследить за выполнением этой программы: вы убедитесь в правильности алгоритма.

P.S. Вообще, существует единая формула для вычисления любого числа Фибоначчи, которая не требует никаких итераций или рекурсии:

Но, как можете догадаться, подвох в том, что цена вычисления степеней нецелых чисел довольно велика, как и их погрешность.

Числа Фибоначчи – это ряд чисел, в котором каждое последующее число равно сумме двух предыдущих:

1, 1, 2, 3, 5, 8, 13 и т. д.

То есть последовательность всегда начинается с двух единиц. А каждое следующее число является определяется по формуле:


Для определения чисел Фибоначчи часто используется рекурсивный алгоритм:

  • Если n = 1 или n = 2, вернуть 1 (поскольку первый и второй элементы ряда Фибоначчи равны 1).
  • Вызвать рекурсивно функцию с аргументами n-1 и n-2.
  • Результат двух вызовов сложить и вернуть полученное значение.
Читайте также:  Подключение ipad к монитору

Реализация с использованием рекурсии

Реализация на Си

Результат выполнения

У решения с рекурсией есть большая проблема: пересекающиеся вычисления. Когда вызывается fibonacci(N) , то подсчитываются значения функции N-1 и для N-2 . Но если требуется вычислить fibonacci(N-1) , то значения для N-2 и N-3 вычисляются заново.

Поэтому поставленную задачу определения чисел Фибоначчи можно решить без использования рекурсии.

Реализация с использованием цикла

В этом алгоритме используется свойство, что для определения следующего числа Фибоначчи используются только два предыдущих значения.

Алгоритм при этом будет следующий

  • Ввести номер N определяемого элемента.
  • Проинициализировать два первых элемента a и b значениями 1, и если N Реализация на Си

Числа Фибоначчи – это ряд чисел, в котором каждое следующее число равно сумме двух предыдущих: 1, 1, 2, 3, 5, 8, 13, . . Иногда ряд начинают с нуля: 0, 1, 1, 2, 3, 5, . . В данном случае мы будем придерживаться первого варианта.

Формула:

Пример вычисления:

Вычисление n-го числа ряда Фибоначчи с помощью цикла while

  1. Присвоить переменным fib1 и fib2 значения двух первых элементов ряда, то есть присвоить переменным единицы.
  2. Запросить у пользователя номер элемента, значение которого он хочет получить. Присвоить номер переменной n .
  3. Выполнять следующие действия n — 2 раз, так как первые два элемента уже учтены:
  1. Сложить fib1 и fib2 , присвоив результат переменной для временного хранения данных, например, fib_sum .
  2. Переменной fib1 присвоить значение fib2 .
  3. Переменной fib2 присвоить значение fib_sum .
  • Вывести на экран значение fib2 .
  • Примечание. Если пользователь вводит 1 или 2, тело цикла ни разу не выполняется, на экран выводится исходное значение fib2 .

    Компактный вариант кода:

    Вывод чисел Фибоначчи циклом for

    В данном случае выводится не только значение искомого элемента ряда Фибоначчи, но и все числа до него включительно. Для этого вывод значения fib2 помещен в цикл.

    Читайте также:  Как удалить номер телефона в инстаграме

    Рекурсивное вычисление n-го числа ряда Фибоначчи

    1. Если n = 1 или n = 2, вернуть в вызывающую ветку единицу, так как первый и второй элементы ряда Фибоначчи равны единице.
    2. Во всех остальных случаях вызвать эту же функцию с аргументами n — 1 и n — 2. Результат двух вызовов сложить и вернуть в вызывающую ветку программы.

    Допустим, n = 4. Тогда произойдет рекурсивный вызов fibonacci(3) и fibonacci(2). Второй вернет единицу, а первый приведет к еще двум вызовам функции: fibonacci(2) и fibonacci(1). Оба вызова вернут единицу, в сумме будет два. Таким образом, вызов fibonacci(3) возвращает число 2, которое суммируется с числом 1 от вызова fibonacci(2). Результат 3 возвращается в основную ветку программы. Четвертый элемент ряда Фибоначчи равен трем: 1 1 2 3.

    Ссылка на основную публикацию
    Часы с функцией диктофона
    Классические часы с секундной стрелкой; Цифровые часы (поддержка 12/24ч форматов, для смены формата сделайте двойной тап по цифрам); Диктофон (поддержка...
    Формула vlookup на русском
    Функция ВПР в Excel позволяет данные из одной таблицы переставить в соответствующие ячейки второй. Ее английское наименование – VLOOKUP. Очень...
    Формула в эксель вычитаем проценты
    В различных видах деятельности необходимо умение считать проценты. Понимать, как они «получаются». Торговые надбавки, НДС, скидки, доходность вкладов, ценных бумаг...
    Часы с которых можно звонить детские
    Ребенка, который самостоятельно посещает школу или гуляет с друзьями, подстерегает много опасностей. Решить эту проблему помогут технологичные детские умные часы...
    Adblock detector