Формула для вычисления углового ускорения

Формула для вычисления углового ускорения

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.6). Ее положение через промежуток времени t зададим углом . Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Мо­дуль вектора d равен углу поворота, а его направление совпадает с направле­нием поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого, винта (рис.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или акси­альными векторами. Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени:

Вектор «в направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор d (рис. 7). Размерность угловой скорости dim=T -1 , a . ее единица — радиан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен

, а направление совпадает с направлением поступательного движения правого винта при его вращении от  к R.

Если =const, то вращение равномер­ное и его можно характеризовать перио­дом вращения Т — временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2. Так как промежутку времени t=T соответствует =2, то = 2/Т, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:

Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор

 сонаправлен вектору  (рис.8), при замедленном.— противонаправлен ему (рис. 9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение а, нор­мальное ускорение аn) и угловыми величи­нами (угол поворота , угловая скорость (о, угловое ускорение ) выражается сле­дующими формулами:

В случае равнопеременного движения точки по окружности (=const)

где  — начальная угловая скорость.

• Что называется материальной точкой? Почему в механике вводят такую модель?

• Что такое система отсчета?

• Что такое вектор перемещения? Всегда ли модуль вектора перемещения равен отрезку пути,

• Какое движение называется поступательным? вращательным?

• Дать определения векторов средней скорости и среднего ускорения, мгновенной скорости

и мгновенного ускорения. Каковы их направления?

• Что характеризует тангенциальная составляющая ускорения? нормальная составляющая

ускорения? Каковы их модули?

• Возможны ли движения, при которых отсутствует нормальное ускорение? тангенциальное

ускорение? Приведите примеры.

• Что называется угловой скоростью? угловым ускорением? Как определяются их направления?

Читайте также:  Вай фай через ноутбук виндовс 10

• Какова связь между линейными и угловыми величинами?

1.1. Зависимость пройденного телом пути от времени задается уравнением s = Att 2 +Dt 3 (С = 0,1 м/с 2 , D = 0,03 м/с 3 ). Определить: 1) через какое время после начала движения ускорение а тела будет равно 2 м/с 2 ; 2) среднее ускорение тела за этот промежуток времени. [ 1) 10 с; 2) 1,1 м/с 2 ]

1.2. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к гори­зонту, если максимальная высота подъема тела равна 1/4 дальности его полета. [45°]

1.3. Колесо радиуса R = 0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением  = 2At+5Вt 4 (A=2 рад/с 2 и B=1 рад/с 5 ). Определить полное ускорение точек обода колеса через t=1 с после начала вращения и число оборотов, сделан­ных колесом за это время. [а = 8,5 м/с 2 ; N = 0,48]

1.4. Нормальное ускорение точки, движущейся по окружности радиуса r=4 м, задается уравнением аn+-Bt+Ct 2 (A=1 м/с 2 , В=6 м/с 3 , С=3 м/с 4 ). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1=5 с после начала движения; 3) полное ускорение для момента времени t2=1 с. [ 1) 6 м/с 2 ; 2) 85 м; 3) 6,32 м/с 2 ]

1.5. Частота вращения колеса при равнозамедленном движении за t=1 мин уменьшилась от 300 до 180 мин -1 . Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0,21 рад/с 2 ; 2) 360]

1.6. Диск радиусом R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением =A+Bt+Ct 2 +Dt 3 (B = l рад/с, С=1 рад/с 2 , D=l рад/с 3 ). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение а; 2) нормальное ускорение аn; 3) полное ускорение а. [ 1) 0,14 м/с 2 ; 2) 28,9 м/с 2 ; 3) 28,9 м/с 2 ]

Система отсчета. Скорость.

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности, все ИСО равноправны, и все законы физики инвариантны относительно перехода из одной ИСО в другую. Это значит, что проявления законов физики в них выглядят одинаково, и записи этих законов имеют одинаковую форму в разных ИСО. Положим на стол линейку и пустим тележку вдоль нее. Тогда линейка будет выполнять роль тела отсчета, а ее шкала – роль координатной оси.

(Тело отсчета – это тело, относительно которого рассматривается изменение положения другого тела. В нашем случае движение тележки мы рассматриваем относительно линейки, которая и становится для нас телом отсчета).

Чтобы определить скорость движения нашей тележки, нам в момент ее запуска нужно также включить секундомер.

Таким образом, для определения положения движущегося тела в любой момент времени, вида движения того тела, его скорости и т.п. необходимы три вещи: прибор для отсчета времени, тело отсчета и связанная с ним система координат.

Система координат, тело отсчета и прибор для измерения времени образуют систему отсчета.

Читайте также:  Удлинитель с защитой от короткого замыкания

Относительно системы отсчета и рассматривают движение тела.

Скорость– это количественная характеристика движения тела.

Средняя скорость – это физическая величина, равная отношению вектора перемещения точки к промежутку времени Δt, за который произошло это перемещение. Направление вектора средней скорости совпадает с направлением вектора перемещения . Средняя скорость определяется по формуле:

Мгновенная скорость, то есть скорость в данный момент времени – это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Иными словами, мгновенная скорость в данный момент времени – это отношение очень малого перемещения к очень малому промежутку времени, за который это перемещение произошло.

Вектор мгновенной скорости направлен по касательной к траектории движения тела

Ускорение и его составляющие.

В произвольном случае движения скорость не остается постоянной. Быстрота изменения скорости по времени и направлению характеризуется ускорением:

(2.3.7)

Ускорение – величина векторная. При криволинейном движении изменяется также и по направлению. В какую сторону? С какой скоростью? Выражение (2.3.7) на эти вопросы не отвечает.

ведем единичный вектор (рис. 2.9), связанный с точкой А и направленный по касательной к траектории д вижения точки А (векторы и в точке А совпадают). Тогда можно записать:

где – модуль вектора скорости.

Получаем два слагаемых ускорения: – тангенциальное ускорение, совпадающее с направлением v в данной точке, – нормальное ускорение, или центростремительное, т.к. направлено оно к центру кривизны, перпендикулярно вектору τ.

Угловая скорость и угловое ускорение.

Вращательное движение тела в зависимости от времени t характеризуют угловые величины: φ (угол поворота в радианах), ω (угловая скорость в рад/сек) и ε (угловое ускорение в рад/сек2). Закон вращательного движения тела выражается уравнением : = f (t).

Угловая скорость – величина, характеризующая быстроту вращения тела, определяется в общем случае как производная угла поворота по времени : ω = d /dt = f’ (t).

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости, определяется как производная угловой скорости : ε = dω/dt = f» (t).

Угловая скорость в технических расчетах очень часто измеряется в оборотах, произведенных в одну минуту (об/мин), поэтому необходимо отчетливо уяснить, что ω рад/сек и n об/мин выражают одно и то же понятие – скорость вращения тела (угловую скорость), но в различных единицах – в рад/сек или в об/мин.

Переход от одних единиц угловой скорости к другим производится по формулам : ω = πn/30 и n = 30ω/π.

Зависимость между угловой скоростью тела и скоростью точки в каждый данный момент выражается равенством : v = ωR.

Касательное ускорение точки зависит от углового ускорения и определяется формулой : at = εR.

Нормальное ускорение точки зависит от угловой скорости тела и определяется зависимостью : an = ω2R.

При решении задачи, приведенной в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности – совершает криволинейное движение.

Законы Ньютона.

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно. Первый закон механики, или закон инерции, как его часто называют, бал, по существу, установлен еще Галилеем, но общую формулировку ему дал Ньютон.

Читайте также:  Как зарядить литиевый аккумулятор 18650

Свободным телом – называют тело, на которое не действуют какие – либо другие тела или поля. При решении некоторых задач тело можно считать свободным, если внешние воздействия уравновешены.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

Дата добавления: 2018-02-18 ; просмотров: 871 ;

Поворот тела на некоторый угол можно задать в виде отрезка, длина которого равна j, а направление совпадает с осью, вокруг которой производится поворот. Направление поворота и изображающего его отрезка связано правилом правого винта.

При вращательном движении твердого тела каждая точка движется по окружности, центр которой лежит на общей оси вращения (рис. 7). При этом радиус-вектор R, направленный от оси вращения к точке, поворачивается за время Dt на некоторый угол Dj. Для характеристики вращательного движения вводится угловая скорость и угловое ускорение.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Угол в 1 радиан – это центральный угол, длина дуги которого равна радиусу окружности; 360 о = 2p рад.

Направление угловой скорости задается правилом правого винта: вектор угловой скорости сонаправлен с , то есть с поступательным движением винта, головка которого вращается в направлении движения точки по окружности.

Линейная скорость точки связана с угловой скоростью:

.

В векторной форме .

Если в процессе вращения угловая скорость изменяется, то возникает угловое ускорение.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени:

Вектор угловой скорости сонаправлен с вектором элементарного изменения угловой скорости , происшедшего за время dt.

При ускоренном движении вектор сонаправлен (рис. 8), при замедленном – противонаправлен (рис. 9).

Найдем связь между угловым и тангенциальным ускорениями:

.

Изменение направления скорости при криволинейном движении характеризуется нормальным ускорением :

.

Таким образом, связь между линейными и угловыми величинами выражается следующими формулами:

.

Типы вращательного движения

а) переменное – вращательное движение, при котором изменяются и :

б) равнопеременное – вращательное движение с постоянным угловым ускорением:

.

в) равномерное – вращательное движение с постоянной угловой скоростью:

.

Равномерное вращательное движение можно характеризовать периодом и частотой вращения .

Период – это время, за которое тело совершает один полный оборот.

, [T] = c.

Частота вращения – это число оборотов совершаемых за единицу времени.

, [n] = c -1 .

За один оборот: ,

, .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8782 — | 8312 — или читать все.

Ссылка на основную публикацию
Формула vlookup на русском
Функция ВПР в Excel позволяет данные из одной таблицы переставить в соответствующие ячейки второй. Ее английское наименование – VLOOKUP. Очень...
Установить цену номенклатуры в 1с розница
Дата публикации 30.01.2019 В программе "1С:Бухгалтерии 8" (ред. 3.0) можно установить цены номенклатуры (товаров, работ, услуг) для их автоматической подстановки...
Установить ярлык алиса на рабочий стол
Алиса – относительно новый голосовой помощник от компании Яндекс, который не только понимает русский язык, но и практически идеально на...
Формула в эксель вычитаем проценты
В различных видах деятельности необходимо умение считать проценты. Понимать, как они «получаются». Торговые надбавки, НДС, скидки, доходность вкладов, ценных бумаг...
Adblock detector