Формула расчета относительной погрешности

Измерения называются прямыми, если значения величин определяются приборами непосредственно (например, измерение длины линейкой, определение времени секундомером и т. д.). Измерения называютсякосвенными, если значение измеряемой величины определяется посредством прямых измерений других величин, которые связаны с измеряемой определенной зависимостью.

Случайные погрешности при прямых измерениях

Абсолютная и относительная погрешность. Пусть проведеноNизмерений одной и той же величиныxв отсутствии систематической погрешности. Отдельные результаты измерений имеют вид:x1,x2, …,xN. В качестве наилучшего выбирается среднее значение измеренной величины:

. (1)

Абсолютной погрешностьюединичного измерения называется разность вида:

.

Среднее значение абсолютной погрешности Nединичных измерений:

(2)

называется средней абсолютной погрешностью.

Относительной погрешностью называется отношение средней абсолютной погрешности к среднему значению измеряемой величины:

. (3)

Приборные погрешности при прямых измерениях

Если нет особых указаний, погрешность прибора равна половине его цены деления (линейка, мензурка).

Погрешность приборов, снабженных нониусом, равна цене деления нониуса (микрометр – 0,01 мм, штангенциркуль – 0,1 мм).

Погрешность табличных величин равна половине единицы последнего разряда (пять единиц следующего порядка за последней значащей цифрой).

Погрешность электроизмерительных приборов вычисляется согласно классу точности С, указанному на шкале прибора:

Например: и,

Погрешность приборов с цифровой индикацией равна единице последнего разряда индикации.

После оценки случайной и приборной погрешностей в расчет принимается та, значение которой больше.

Вычисление погрешностей при косвенных измерениях

Большинство измерений являются косвенными. В этом случае искомая величина Х является функцией нескольких переменных а, b, c, значения которых можно найти прямыми измерениями: Х = f(a,b,c…).

Среднее арифметическое результата косвенных измерений будет равно:

Одним из способов вычисления погрешности является способ дифференцирования натурального логарифма функции Х = f(a,b,c…). Если, например, искомая величина Х определяется соотношением Х = , то после логарифмирования получаем:lnX = lna + lnb + ln(c+d).

Дифференциал этого выражения имеет вид:

.

Применительно к вычислению приближенных значений его можно записать для относительной погрешности в виде:

 = . (4)

Абсолютная погрешность при этом рассчитывается по формуле:

Таким образом, расчет погрешностей и вычисление результата при косвенных измерениях производят в следующем порядке:

1) Проводят измерения всех величин, входящих в исходную формулу для вычисления конечного результата.

2) Вычисляют средние арифметические значения каждой измеряемой величины и их абсолютные погрешности.

3) Подставляют в исходную формулу средние значения всех измеренных величин и вычисляют среднее значение искомой величины:

4) Логарифмируют исходную формулу Х = f(a,b,c…) и записывают выражение для относительной погрешности в виде формулы (4).

5) Рассчитывают относительную погрешность  = .

6) Рассчитывают абсолютную погрешность результата по формуле (5).

7) Окончательный результат записывают в виде:

Абсолютные и относительные погрешности простейших функций приведены в таблице:

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Читайте также:  Вертикальный пылесос с электрощеткой

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

3.1 Среднеарифметическая погрешность.Как уже отмечалось раньше, измерения принципиально не могут быть абсолютно точными. Поэтому в ходе измерения возникает задача об определении интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Такой интервал указывают в виде абсолютной ошибки измерения.

Если предположить, что грубые промахи в измерениях устранены, а систематические ошибки сведены к минимуму тщательной настройкой приборов и всей установки и не являются определяющими, то результаты измерений будут, в основном, содержать только случайные погрешности, которые являются знакопеременными величинами. Поэтому, если проведено несколько повторных измерений одной и той же величины, то наиболее вероятным значением измеряемой величины является ее среднеарифметическое значение:

(1)

где ai, — значение отдельных измерений, n — число проведенных измерений.

Погрешностью или абсолютной ошибкой отдельного измерения называют разность между значением, полученным в данном измерении, и среднеарифметическим значением измеряемой величины:

(2)

Средней абсолютной ошибкойназывается среднеарифметическое модулей абсолютных ошибок отдельных измерений:

(3)

При достаточно большом числе измерений случайные ошибки возникают с равной вероятностью как в сторону увеличения, так и в сторону уменьшения измеряемой величины, то есть можно считать, что истинное значение измеряемой величины заключено в интервале

(4)

Последнее неравенство обычно принято записывать как окончательный результат измерения следующим образом:

(5)

где абсолютная погрешность aср должна вычисляться (округляться) с точностью до одной-двух значащих цифр. Абсолютная ошибка показывает, в каком знаке числа содержатся неточности, поэтому в выражении для аср оставляют все верные цифры и одну сомнительную. То есть среднее значение и средняя ошибка измеряемой величины должны вычисляться до цифры одного и того же разряда. Например: g = (9,78 ± 0,24) м/с 2 .

Относительная погрешность.Абсолютная ошибка определяет интервал наиболее вероятных значений измеряемой величины, но не характеризует степень точности произведенных измерений. Например, расстояние между населенными пунктами, измеренное с точностью до нескольких метров, можно отнести к весьма точным измерениям, в то время как измерение диаметра проволоки с точностью до 1 мм, в большинстве случаев будет являться весьма приближенным измерением.

Степень точности проведенных измерений характеризует относительная погрешность.

Средней относительной погрешностьюили просто относительной ошибкой измерения называется отношение средней абсолютной ошибки измерения к среднему значению измеряемой величины:

(6)

или выраженная в процентах

(7)Читайте также:  Как читать переписку в контакте другого человека

Относительная ошибка является безразмерной величиной и обычно выражается в процентах.

3.2 Погрешность метода или приборная погрешность.Среднеарифметическое значение измеряемой величины тем ближе к истинному, чем больше проведено измерений, при этом абсолютная погрешность измерения с увеличением их числа стремится к значению, которое определяется методом измерения и техническими характеристиками используемых приборов.

Погрешность методаили приборную погрешность можно рассчитать по одноразовому измерению, зная класс точности прибора или другие данные технического паспорта прибора, в котором указывается либо класс точности прибора, либо его абсолютная или относительная погрешность измерения.

Класс точностиприбора выражает в процентах номинальную относительную ошибку прибора, то есть относительную ошибку измерения, когда измеряемая величина равна предельному для данного прибора значению

(8)

Класс точности указывается на шкале прибора цифрой, обведенной кружочком. Согласно ГОСТу все электроизмерительные приборы разделяются на 8 классов: 0,05; 0,1; 0,2; 0,5; 1.0 1,5; 2,5; 4,0.

Абсолютная погрешность прибора равна предельному для данного прибора значению измеряемой величины, умноженному на класс точности (К) и разделен­ному на 100:

(9)

Абсолютная погрешность прибора не зависит от значения измеряемой величины.

Относительная погрешность прибора (по определению):

(10)

откуда видно, что относительная приборная ошибка тем меньше, чем ближе значение измеряемой величины к пределу измерения данного прибора. Поэтому ре­комендуется подбирать приборы так, чтобы измеряемая величина составляла 60 -90% от величины, на которую рассчитан прибор. При работе с многопредельными приборами тоже следует стремиться к тому, чтобы отсчет производился во второй половине шкалы.

При работе с простыми приборами (линейка, мензурка и т.п.), классы точности и погрешности которых не определены техническими характеристиками, абсолютную погрешность прямых измерений принимают равной половине цены деления данного прибора. (Ценой деления называют значение измеряемой величины при показаниях прибора в одно деление).

Приборную погрешность косвенных измеренийможно рассчитать, используя правила приближенных вычислений. В основе вычисления погрешности косвенных измерений лежат два условия (предположения):

1. Абсолютные ошибки измерений всегда очень малы по сравнению с измеряемыми величинами. Поэтому абсолютные ошибки (в теории) можно рассматривать как бесконечно малые приращения измеряемых величин, и они могут быть заменены соответствующими дифференциалами.

2. Если физическая величина, которую определяют косвенным путем, является функцией одной или нескольких непосредственно измеряемых величин, то абсолютная ошибка функции, обусловленная бесконечно малыми приращениями, является также бесконечно малой величиной.

При указанных допущениях абсолютную и относительную погрешность можно рассчитать, используя известные выражения из теории дифференциального исчисления функций многих переменных:

(11) (12)

Абсолютные ошибки непосредственных измерений могут иметь знаки «плюс» или «минус», но какой именно — неизвестно. Поэтому при определении погрешностей рассматривается наиболее невыгодный случай, когда ошибки прямых изме­рений отдельных величин имеют один и тот же знак, то есть абсолютная ошибка имеет максимальное значение. Поэтому при расчете приращений функции f(x1 ,x2 ,…,хn) по формулам (11) и (12) частные приращения должны складываться по абсолютной величине. Таким образом, используя приближение Dхi ≈ dxi, и вы­ражения (11) и (12), для бесконечно малых приращений можно записать:

(13) (14)

Здесь: а — косвенно измеряемая физическая величина, то есть определяемая по расчетной формуле, — абсолютная ошибка ее измерения, х1, х2. хn; Dх1, Dx2. Dхn, — физические величины прямых измерений и их абсолютные ошибки соответственно.

Таким образом: а) абсолютная ошибка косвенного метода измерения равна сумме модулей произведений частных производных функции измерения и соответствующих абсолютных ошибок прямых измерений; б) относительная ошибка косвенного метода измерения равна сумме модулей дифференциалов от логарифма натурального функции измерения, определяемой расчетной формулой.

Выражения (13) и (14) позволяют рассчитать абсолютные и относительные погрешности по одноразовому измерению. Заметим, что для сокращения расчетов по указанным формулам достаточно рассчитать одну из погрешностей (абсолютную или относительную), а другую рассчитать, используя простую связь между ними:

(15)

На практике чаще пользуются формулой (13), так как при логарифмировании расчетной формулы произведения различных величин преобразуются в соответствующие суммы, а степенные и показательные функции преобразуются в произведения, что намного упрощает процесс дифференцирования.

Читайте также:  Лучший смартфон в пределах 10 тысяч

Для практического руководства по расчету погрешности косвенного метода измерения можно пользоваться следующим правилом:

Чтобы вычислить относительную ошибку косвенного метода измерения, нужно:

1. Определить абсолютные ошибки (приборные или средние) прямых измерений.

2. Прологарифмировать расчетную (рабочую) формулу.

3. Принимая величины прямых измерений за независимые переменные, найти полный дифференциал от полученного выражения.

4. Сложить все частные дифференциалы по абсолютной величине, заменив в них дифференциалы переменных соответствующими абсолютными ошибками прямых измерений.

5. Используя полученное выражение, рассчитать относительную погрешность.

6. По формуле (15) рассчитать абсолютную ошибку.

Например, плотность тела цилиндрической формы вычисляется по формуле:

(16)

где m, D, h — измеряемые величины.

Получим формулу для расчета погрешностей.

1. Исходя из используемого оборудования, определяем абсолютные погрешности измерения массы, диаметра и высоты цилиндра (∆m, ∆D, ∆h соответственно).

2. Логарифмируем выражение (16):

4. Заменяя дифференциал независимых переменных на абсолютные ошибки и складывая модули частных приращений, получаем:

5. Используя численные значения m, D, h, D, m, h, рассчитываем Е.

6. Вычисляем абсолютную ошибку

где r рассчитано по формуле (16).

Предлагаем самим убедиться, что в случае полого цилиндра или трубки с внутренним диаметром D1 и внешним диаметром D2

К расчету ошибки метода измерения (прямого или косвенного) приходится прибегать в случаях, когда многократные измерения либо невозможно провести в одних и тех же условиях, либо они занимают много времени.

Если определение погрешности измерения является принципиальной задачей, то обычно измерения проводят многократно и вычисляют и среднеарифметическую погрешность и погрешность метода (приборную погрешность). В окончательном результате указывают большую из них.

О точности вычислений

Ошибка результата определяется не только неточностями измерений но и неточностями вычислений. Вычисления необходимо проводить так, чтобы их ошибка была на порядок меньше ошибки результата измерений. Для этого вспомним правила математического действия с приближёнными числами.

Результаты измерений – приближённые числа. В приближённом числе все цифры должны быть верными. Последней верной цифрой приближённого числа считается такая цифра, ошибка в которой не превышает одной единицы её разряда. Все цифры от 1 до 9 и 0, если он стоит в середине или в конце числа, называются значащими. В числе 2330 — 4 значащих цифры, а в числе 6,1×10 2 – только две, в числе 0,0503 – три, так как нули слева от пятёрки незначащие. Запись числа 2,39 означает, что верны все знаки до второго после запятой, а запись в 1,2800 – что верно также и третий и четвёртый знаки. В числе 1,90 три значащих цифры и это значит, что при измерении мы учитывали не только единицы, но и десятые и сотые, а в числе 1,9 – только две значащих цифры и это значит, что мы учитывали целые и десятые и точность этого числа в 10 раз меньше.

Правила округления чисел

При округлении оставляют лишь верные знаки, остальные отбрасываются.

1. Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5.

2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля.

Например, различные округления числа 35,856 будут: 35,9; 36.

3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее чётное число, то есть, последняя сохраняемая цифра остаётся неизменной, если она чётная и увеличивается на единицу, если она нечётная.

Например, 0,435 округляем до 0,44; 0,365 округляем до 0,36.

9726552