Фрактальная графика что это

Фрактальная графика что это

Фрактальная графика, как и векторная, основана на математических вычислениях. Однако её базовым элементом является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениямлибосистемам уравнений. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Определение. Фрактал — это объект, отдельные элементарные части которого повторяют (наследуют) свойства своих «родительских» структур.

Понятия фрактал и фрактальная геометрия (от лат. fractus состоящий из фрагментов) впервые были предложены в 1975 г. математиком Б.Мандельбротом для обозначения нерегулярных, но самоподобных структур. Рождение фрактальной геометрии связывают с выходом в 1977 г. его книги «Фрактальная геометрия природы», в которой были объединены в единую систему научные разработки учёных, работавших в этой области (Пуанкаре, Жюлиа, Кантор и др.). С точки зрения компьютерной графики фрактальная геометрия незаменима при задании линий и поверхностей достаточно сложной формы, а также при генерации объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является их самоподобие. В самом простом случае небольшая часть фрактала содержит информацию обо всём фрактале в целом. Существует большое разнообразие фракталов. Потенциально наиболее полезным их видом являются фракталы на основе системы итеративных функций (Iterated Function System – IFS). Метод IFS, изобретённый Майклом Барнсли и его коллегами из Технологического института шт. Джорджия (США), применительно к построению фрактальных изображений базируется на самоподобии их отдельных элементов и заключается в моделировании всего рисунка несколькими меньшими его фрагментами. Специальные уравнения позволяют переносить, поворачивать и изменять масштаб отдельных участков изображения, служащих компоновочными блоками для остальной части картины в целом.

Самыми известными природными фрактальными объектами являются деревья, от каждой ветки которых ответвляются меньшие, похожие на нее, от тех — еще меньшие и так далее. Появление новых элементов меньшего масштаба происходит по достаточно простому алгоритму. Очевидно, что описать такой объект можно всего лишь несколькими математическими уравнениями. Фрактальными свойствами обладают также и многие другие природные объекты: снежинка при увеличении тоже оказывается фракталом, по фрактальным алгоритмам растут кристаллы, растения и т.д.

Посмотрим, как строится простейший фрактал — фрактальный треугольник, его еще называют «снежинка Коха» (рис. 8.2.). Используя простейший алгоритм, треугольники можно достраивать аналогичным образом до бесконечности, что приведёт к получению объекта любого уровня сложности. При этом в отличие от векторной графики, ничего кроме самих уравнений в памяти ком-пьютера хранить не нужно. Вся информация, необходимая для воспроизведения этого фрактала, будет занимать всего лишь несколько десятков байт. Возникает вопрос — а можно ли сжимать данные, подобрав для этого подходящий фрактальный алгоритм? Принципиально — можно, и в этом направлении в настоящее время ведутся активные исследования. Некоторые уже разработанные фрактальные алгоритмы позволяют сжимать определенные типы файлов в 30 раз и более.

8.6.Трехмерная (3D) графика.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов и т.п. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования — создание подвижного изображения реального физического тела. В упрощенном виде для пространственного моделирования объекта требуется:

§ Спроектировать и создать виртуальный каркасскелет») объекта, наиболее полно соответствующий его реальной форме;

§ Спроектировать и создать виртуальные материалы (текстуры), по физическим свойствам визуализации похожие на реальные;

§ Наложить виртуальные материалы на различные части поверхности объекта (спроецировать текстуры на объект);

§ Настроить физические параметры пространства, в котором будет находиться объект, т.е. задать освещение, гравитацию, свойства атмосферы и т.д.;

§ Задать траекторию движения объекта;

§ Рассчитать результирующую последовательность кадров изображения;

§ Наложить поверхностные эффекты на итоговый анимационный сюжет.

Для создания реалистичной каркасной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие, так назы­ваемые сплайновые поверхности. В последнем случае вид поверхности определя­ется расположенной в пространстве сеткой опор­ных точек, каждой из которых присваивается коэф­фициент, задающий степень её влиянии на часть поверхности, расположенной вблизи опорной точки. От взаимного распо­ложения точек и величины коэффициентов зависит форма и гладкость поверх­ности в целом. Деформация объекта в общем случае обеспечивается перемещением отдельных контрольных точек каркаса, связанных с близлежащими опорными точками и влияющих на них в соответствии с удаленностью друг от друга. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое с учетом их взаимодействия на основе заданной физической модели.

После формирования «скелета» объекта необходимо покрыть его поверхность требуемыми материалами (текстурами). При этом осуществляется так называемая визуализация поверхности, т.е. расчет коэффициента её прозрачности, угла преломления лучей света на границе материала и окружающего пространства и т.д. Закраска поверхностей объекта осуществляется, как правило, метода­ми Гуро или Фонга,[8] ) представляющими собой специальные алгоритмы расчета и формирования цветовых оттенков отдельных частей этих поверхностей.

Из всех параметров пространства, в котором будет существовать создаваемый объект, с точки зрения визуализации самым важным является определение источников света. В трехмерной графике принято использовать виртуальные эквиваленты реальных физичес­ких световых источников, таких как, например, Солнце (удаленный неточечный источник), электри­ческая лампочка (точечный источник), естественная освещенность вне видимости Солнца и Луны (растворен­ный свет), прожектор (направленный источник).

После завершения конструированияи визуализации объекта приступают к его «оживлению», то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах изображения. В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в пятом кадре) задается новая ориентация объекта и так далее до конечного положения. Промежуточные кадры вычисляются программно по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями, определяемыми законами взаимодействия объектов между собой, разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей и т.д. Такой подход называют методом инверсной кинематики движения. Он хорошо работает при моделировании различных механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели, когда создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения этих точек просчитываются предыдущим методом, затем на каркас накладывается оболочка из смоделированных поверхностей и осуществляется их визуализация путем наложения текстур с учетом условий освещенности.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Для этого на объекте закрепляют в контрольных точках источники света и снимают заданное движение на видео- или кинопленку. Затем координаты этих точек по кадрам переводят в компьютер и присваивают соответствующим опорным точкам каркасной модели. В результате движе­ния смоделированного объекта оказываются практически неотличимыми от движений живого прототипа.

Читайте также:  Как отследить вацап жены

Процесс расчета реалистичных изображений в компьютерной графике называют рендерингом(визуализацией). Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман и т.д. Однако их применение в полном объеме требует достаточно больших вычислитель­ных ресурсов и поэтому в персональных компьютерах обычно реализуется лишь в упро­щенных вариантах. По завершении рендерингакомпьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров других продуктов.

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств — автомобилей, судов, летательных и кос­мических аппаратов. В них очень точно должны быть смоделированы технические параметры реальных объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры могут быть реализованы и на персональных компьютерах.

Среди программных средств создания и обработки трехмерной графики для персональных компьютеров можно выделить три пакета:

§ 3D Studio Max (фирмаKinetix). Пакет считается полупрофессиональным, однако его ресурсов вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Его отличительными особенностями являются поддержка большинства существующих аппаратных ускорителей 3D-графики, мощные световые эффекты и большое число программных дополнений от сторонних фирм. Сравнительная нетребовательность к аппаратным ресурсам позволяет использовать 3D Studio Max даже на ПК среднего уровня. Вместе с тем по средствам моделирования и анимации он все же уступает более разви­тым современным программным средствам.

§ Softimage 3D (фирмаMicrosoft). Программа изначально создавалась для специализированных графических станций и лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Её отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров, качественный и достаточно быстрый модуль для рендеринга и множество программных дополнений, значительно расширяющих функции пакета. Однако на платформе IBM PC Softimage 3Dвыглядит несколько тяжеловато и требует достаточно мощных аппаратных ресурсов.

§ Maya (фирмыAlias, Wavefront, TDI). Один из наиболее передовых пакетов в классе средств создания и обработки трехмерной графики для персональных компьютеров с точки зрения интерфейса и функциональных возможностей. Существует в вариантах для различных операционных систем, в том числе и Windows NT. Весь инструментарий Maya сведен в четыре группы: анимация (Animation), моделирование (Modeling), физическое моделирование (Dynamic) и визуализация(Rendering). Пакет имеет модульное построение и включает в себя программные блоки, обеспечивающие имитацию физических твердых тел, захват движения, обработку звука, обработку вирту­альных моделей методами, характерными для реальной работы скульпторов и художников, а также сопряжение реальных натурных съемок с компьютерной анимацией и т.д.

Не нашли то, что искали? Воспользуйтесь поиском:


Дмитрий Шахов, фрилансер, г.Москва

Фракталы привлекают внимание, завораживают, гипнотизируют. Однако многие считают, что такие изображения — просто узоры, которые хороши лишь на экране монитора или в качестве прикладных вспомогательных средств для оформления различной полиграфической продукции. При этом мало кто догадывается, что простота эта только кажущаяся. На самом деле фрактальная графика довольно сложна и является результатом слияния математики и искусства. Сегодня фракталы — один из самых перспективных, быстро развивающихся видов компьютерной графики.

Прежде чем перейти к рассмотрению фрактальной графики, рассмотрим, в чем суть компьютерной, или «машинной», графики, а также общепринятую классификацию компьютерной графики (Computer Graphics, CG). Это понятие появилось относительно недавно, в 60­х годах прошлого столетия, когда были изобретены электронные вычислительные устройства. Термин «компьютерная графика» трактуется в различных источниках по­разному. Некоторые определяют его как область информатики, занимающуюся вопросами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере. Компьютерная графика охватывает все виды и формы представления изображений, доступные для человеческого восприятия на экране монитора или в виде копии на внешнем носителе (бумаге, ткани, кинопленке и т.п.). В других источниках компьютерная графика называется специальной областью информатики, изучающей методы и средства создания и обработки изображений с помощью программно­аппаратных вычислительных комплексов.

В широком смысле слова компьютерная графика — это всё, для чего используется визуальная, образная среда отображения на мониторе. Если сузить понятие до практического использования, то под компьютерной графикой можно подразумевать процесс создания, обработки и вывода разного рода изображений с помощью компьютера.

В зависимости от способа формирования изображений компьютерная графика делится на растровую, векторную и фрактальную (рис. 1).

Основным и наименьшим элементом растрового изображения является точка. Когда изображение находится в программной среде на экране, она называется пикселом. Каждый пиксел растрового изображения имеет две характеристики: размещение и цвет. Чем больше количество пикселов и меньше их размеры, тем лучше выглядит изображение. Большие объемы данных — это основная проблема при использовании растровых изображений. Второй недостаток растровых изображений связан с невозможностью их увеличения для рассмотрения деталей. Поскольку изображение состоит из точек, увеличение изображения приводит к тому, что эти точки становятся крупнее и напоминают мозаику, а следовательно, дополнительных деталей в этом случае рассмотреть не удается. Более того, увеличение точек растра визуально искажает изображение и делает его зернистым. Этот эффект называется пикселизацией.

Рис. 1. Типы компьютерной графики: а — растровая; б — векторная; в — фрактальная

В векторной графике основным элементом изображения является линия (не важно, прямая или кривая). Разумеется, в растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Для каждой точки линии в растровой графике отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде формулы, а точнее, в виде нескольких параметров. Что бы мы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек для любой линии остается неизменным.

Рис. 2. Пример фрактальности в природе — капуста Романеску

Изображение в векторном формате легко редактируется: его можно без потерь масштабировать, поворачивать, деформировать. Имитация трехмерности в векторной графике тоже проще, чем в растровой. Дело в том, что каждое преобразование фактически выполняется так: старое изображение (или фрагмент) стирается, а вместо него строится новое. Математическое описание векторного рисунка остается прежним — изменяются только значения некоторых переменных, например коэффициентов.

Фрактальная графика относительно молода по сравнению с растровой и векторной графикой. Основой фрактальной графики является фрактальная геометрия, позволяющая математически описывать различные виды неоднородностей, встречающихся в природе. Понятия «фрактал», «фрактальная геометрия» и «фрактальная графика» появились в конце 1970­х. Слово «фрактал» образовано от латинского fractus и означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги «The Fractal Geometry of Nature» Бенуа Мандельброта. Определение фрактала, данное Мандельбротом: фракталом называется структура, состоящая из частей, которые в каком­то смысле подобны целому. Самоподобие — одно из основных свойств фракталов. Таким образом, фрактальная графика — это вид компьютерной графики, в которой в той или иной мере используются самоподобные структуры (проще говоря, фракталы). Далее мы поговорим о том, что же такое самоподобие и где в природе встречаются фракталы.

Читайте также:  Флеймить что это значит

Что подразумевается под самоподобием? Капуста Романеску из Италии — самый характерный пример фрактального объекта в природе. Капустные почки у нее нарастают в виде некой спирали (рис. 2), которая называется логарифмической, а число капустных почек совпадает с числом Фибоначчи. Числа Фибоначчи — это элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946…, в которой каждое последующее число равно сумме двух предыдущих чисел. Свое название они получили в честь средневекового математика Леонардо Пизанского (известного как Фибоначчи). Каждая часть элементов капусты Романеску имеет ту же форму, что и весь кочан. Это свойство повторяется с регулярностью в различных масштабах. По сути эта капуста является природным фракталом. То есть как бы мы ни увеличивали фрактал, после каждого шага мы увидим ту же форму, что характерна для данного фрактала в целом. Таким образом, с фракталами тесно связаны еще два понятия — итерация и рекурсия. Рекурсия — процесс повторения элементов самоподобным образом. Итерация — упрощенно говоря — повторное применение какой­либо математической операции.

Рис. 3. Рекурсия кривой Коха

На самом деле фрактальные свойства имеет очень большое количество природных объектов — просто мало кто об этом задумывается. Вы можете любоваться облаками на небе, набегающими волнами прибоя, ходить по лесу — и даже не подозревать, что в основе этой красоты лежит математика! Да­да! Исследования фрактальных свойств природных объектов начал проводить еще Бенуа Мандельброт. Оказывается, несмотря на всю сложность природных объектов, многие из них в принципе описываются довольно простыми математическими формулами. Хотя в чистом виде фракталы в природе не существуют. То, что мы наблюдаем, — это так называемые стохастические фракталы. То есть такие фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие­либо его параметры. «Чистый» фрактал можно приближать до бесконечности, поскольку он обладает бесконечной рекурсией, а вот о стохастических фракталах этого сказать нельзя.

Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими­либо из следующих свойств:

  • имеет нетривиальную структуру во всех масштабах — этим фрактал отличается от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведет к упрощению структуры, поэтому на всех шкалах мы увидим одинаково сложную картину;
  • является самоподобной или приближенно самоподобной;
  • имеет дробную метрическую размерность или метрическую размерность, превосходящую топологическую.

Кроме того, для построения фрактала необходимо учитывать начальное состояние и описывающую его формулу — так называемое исходное множество, которое пропускается через некий механизм, вызывающий его отображение и добавляющий отображенное множество к исходному. Этот процесс и называется итерацией. Таким образом, после нескольких подобных относительно простых операций получается весьма сложное изображение. В процессе получения фрактала важны два момента: исходное множество и механизм преобразования. В зависимости от алгоритма построения фракталы делятся на линейные и нелинейные.

Алгоритмы построения линейных фракталов определяются линейными функциями. В них самоподобие присутствует в простейшем варианте: любая часть повторяет целое.

Нелинейные фракталы задаются нелинейной функцией роста, то есть уравнениями в степени выше первой. В них самоподобие будет более сложным: любая часть является уже не точной, а деформированной копией целого.

Один из простейших примеров линейного фрактала — кривая Коха (1904 год, немецкий математик Хельга фон Кох).

Существует простая рекурсивная процедура (получение самоподобных частей фрактала) формирования фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рис. 3 приведено несколько шагов этой процедуры для кривой Коха.

Одним из первых нелинейные фракталы описал французский математик Гастон Жюлиа еще в 1918 году. Но в его работе отсутствовали изображения исследованных им множеств и термин «фрактал».

В наше время компьютеры позволили получить изображения множеств Жюлиа (рис. 4а), которые вместе с множествами Мандельброта(рис. 4б) являются ныне самыми известными квадратичными фрактальными структурами.

Рис. 4. Изображения множеств Жюлиа (а) и Мандельброта (б)

Оба типа фракталов возникают в результате реализации на комплексной плоскости самого простого нелинейного алгоритма.

Здесь в основу метода построения изображений положен принцип наследования от так называемых родителей геометрических свойств объектов­наследников. Построение фрактального рисунка осуществляется по какому­либо алгоритму или путем автоматической генерации изображений при помощи вычислений по конкретным формулам. Изменения значений в алгоритмах или коэффициентов в формулах приводит к модификации этих изображений. Главным преимуществом фрактальной графики является то, что в файле фрактального изображения сохраняются только алгоритмы и формулы.

Фрактал — объект, отдельные элементы которого наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего несколькими математическими уравнениями.

Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти. В то же время фракталы слабо применимы к изображениям вне этих классов.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Именно поэтому фрактальная графика не признается ни компьютерными, ни обычными художниками из­за того, что якобы здесь за человека всё делает программа. На самом деле процесс работы с фрактальной графикой хоть и автоматизирован, но, тем не менее, полностью творческий: комбинируя формулы и меняя переменные, можно добиваться удивительных результатов и воплощать самые смелые художественные замыслы. Создание фрактальной художественной композиции заключается не в рисовании или оформлении, а в программировании.

Читайте также:  Блютуз коннектор для наушников

Изменяя и комбинируя окраску фрактальных фигур, можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также составлять из полученных фигур «фрактальную» композицию. Фрактальная графика, так же как векторная и трехмерная, является вычисляемой. Ее главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому для выполнения всех вычислений в памяти компьютера ничего, кроме формулы, хранить не требуется.

Рис. 5. Изображения, полученные с помощью фракталогенераторов

Только изменив коэффициенты уравнения, можно получить совершенно иное изображение. Эта идея нашла применение в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.

В машинной графике фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически, благодаря фрактальной графике найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Собственно, поэтому настоящей статье и дано такое название. Многие природные объекты имеют фрактальные свойства, поэтому их легко создавать на компьютере с помощью фрактальной графики. Например, при разработке компьютерной игры нет нужды каждый раз заново рисовать лес, горы, облака и т.д. Эти объекты обладают самоподобием, а следовательно, могут быть легко сгенерированы программными средствами на основе математических формул. Добавляя или изменяя некоторые параметры исходной формулы, можно добиться удивительного разнообразия получаемых природных объектов. Фракталы на экране компьютера — это узоры, построенные самим ПК по заданной программе. Помимо фрактальной живописи существуют фрактальные анимация и музыка.

В заключение хотелось бы отметить следующее: фрактальная графика — одно из самых необычных и перспективных направлений в компьютерной графике. Результаты, которые можно получить с ее помощью, поражают воображение даже самых искушенных ценителей компьютерного искусства. Так, изображения, создаваемые с помощью программ­фракталогенераторов, порой содержат совершенно фантастические и необычные пейзажи (рис. 5), которые даже не снились художникам­сюрреалистам. И наоборот, с помощью фрактальной графики можно с удивительной точностью изобразить то, что мы видим в окружающем нас мире. Воистину мир фракталов удивителен!

Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся и перспективных видов компьютерной графики.

Математической основой фрактальной графики является фрактальная геометрия. Здесь в основу метода построения изображений положен принцип наследования от, так называемых, «родителей» геометрических свойств объектов-наследников.

Понятия фрактал, фрактальная геометрия и фрактальная графика, появившиеся в конце 70-х, сегодня прочно вошли в обиход математиков и компьютерных художников. Слово фрактал образовано от латинского "fractus" и в переводе означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандель-Бротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался.

Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют самоподобным, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.

В центре фрактальной фигуры находится её простейший элемент — равносторонний треугольник, который получил название «фрактальный». Затем, на среднем отрезке сторон строятся равносторонние треугольники со стороной, равной (1/3a) от стороны исходного фрактального треугольника. В свою очередь, на средних отрезках сторон полученных треугольников, являющихся объектами-наследниками первого поколения, выстраиваются треугольники-наследники второго поколения со стороной (1/9а) от стороны исходного треугольника.

Таким образом, мелкие элементы фрактального объекта повторяют свойства всего объекта. Полученный объект носит название «фрактальной фигуры». Процесс наследования можно продолжать до бесконечности. Таким образом можно описать и такой графический элемент как прямая.

Изменяя и комбинирую окраску фрактальных фигур, можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также составлять из полученных фигур «фрактальную композицию». Фрактальная графика, так же как векторная и трёхмерная, является вычисляемой. Её главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений ничего, кроме формулы, хранить не требуется.

Только изменив коэффициенты уравнения, можно получить совершенно другое изображение. Эта идея нашла использование в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.

Итак, базовым понятием для фрактальной компьютерной графики являются «Фрактальный треугольник». Затем идет «Фрактальная фигура», «Фрактальный объект», «Фрактальная прямая», «Фрактальная композиция», «Объект-родитель» и «Объект наследник».

Следует обратить внимание на то, что фрактальная компьютерная графика как вид компьютерной графики двадцать первого века получила широкое распространение не так давно.

Её возможности трудно переоценить. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, где можно реализовать множество приёмов: горизонтали и вертикали, диагональные направления, симметрию и асимметрию и др. Сегодня немногие компьютерщики в нашей стране и за рубежом знают фрактальную графику. С чем можно сравнить фрактальное изображение? Ну, например, со сложной структурой кристалла, со снежинкой, элементы которой выстраивается в одну сложную композицию. Это свойство фрактального объекта может быть удачно использовано для создания орнамента или декоративной композиции. Сегодня разработаны алгоритмы синтеза коэффициентов фрактала, позволяющего воспроизвести копию любой картинки сколь угодно близкой к исходному оригиналу.

С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически, благодаря фрактальной графике, найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Геометрические фракталы на экране компьютера — это узоры, построенные самим компьютером по заданной программе. Помимо фрактальной живописи существуют фрактальная анимация и фрактальная музыка.

Создатель фракталов — это художник, скульптор, фотограф, изобретатель и ученый в одном лице. Вы сами задаете форму рисунка математической формулой, исследуете сходимость процесса, варьируя его параметры, выбираете вид изображения и палитру цветов, то есть творите рисунок «с нуля». В этом одно из отличий фрактальных графических редакторов (и в частности — Painter) от прочих графических программ.

Например, в Adobe Photoshop изображение, как правило, «с нуля» не создается, а только обрабатывается. Другой самобытной особенностью фрактального графического редактора Painter (как и прочих фрактальных программ, например, Art Dabbler) является то, что реальный художник, работающий без компьютера, никогда не достигнет с помощью кисти, карандаша и пера тех возможностей, которые заложены в Painter программистами.

Ссылка на основную публикацию
Формула vlookup на русском
Функция ВПР в Excel позволяет данные из одной таблицы переставить в соответствующие ячейки второй. Ее английское наименование – VLOOKUP. Очень...
Установить цену номенклатуры в 1с розница
Дата публикации 30.01.2019 В программе "1С:Бухгалтерии 8" (ред. 3.0) можно установить цены номенклатуры (товаров, работ, услуг) для их автоматической подстановки...
Установить ярлык алиса на рабочий стол
Алиса – относительно новый голосовой помощник от компании Яндекс, который не только понимает русский язык, но и практически идеально на...
Формула в эксель вычитаем проценты
В различных видах деятельности необходимо умение считать проценты. Понимать, как они «получаются». Торговые надбавки, НДС, скидки, доходность вкладов, ценных бумаг...
Adblock detector