Решебник по геометрии за 10 класс (Л.С.Атанасян, 2001 год),
задача №431
к главе «Глава V. Метод координат в пространстве. § 1. Координаты точки и координаты вектора.».
Если a=b=c, то треугольник ABC — равносторонний. Если:
с=b ≠ a, то треугольник равнобедренный, если нет одинаковых сторон: с ≠ b ≠ а, то есть если а > b ≥ с, то следует проверить, выполняется ли теорема Пифагора. Если да, то ΔABC — прямоугольный.
AB=ВС=АС, треугольник равносторонний.
Проверим, выполняется ли равенство:
— верно. Следовательно, треугольник ABC — прямоугольный.
Проверим, выполняется ли равенство
6=4+2 — выполняется. Следовательно, треугольник ABC — прямоугольный равносторонний.
Онлайн калькулятор поможет узнать по сторонам, является ли треугольник прямоугольным, равнобедренным, равносторонним или разносторонним.
Как определить, что треугольник прямоугольный: по Теорема Пифагора — сумма квадратов длин катетов равна квадрату длины гипотенузы c 2 = a 2 + b 2
Как определить, что треугольник равнобедренный: один из признаков равнобедренного треугольника — две стороны равны.
Как определить, что треугольник равносторонний: все стороны равны.
Принято выделять три типа треугольников:
тупоугольные — один из углов более 90 градусов,
прямоугольные — один из угол равен 90 градусов,
остроугольные — все углы менее 90 градусов.
Это классификация по типу углов.
Теорема о неравенстве треугольника: Каждая сторона треугольника меньше суммы двух других сторон. То есть
если с — большая сторона и
если а + b > c, то треугольник существует и
если a² + b² > c², то треугольник остроугольный,
если a² + b² 4, следовательно
треугольник остроугольный, разносторонний.