Как сбросить настройки ардуино

После нажатия на кнопку RESET, а также по сигналу DTR микросхемы FT232R на плате Arduino Duemilanove или по сигналу на выводе D7 микросхемы ATmega8U2 платы Arduino Uno, управление передаётся загрузчику (bootloader) Arduino, расположенному в верхних 2 КБ памяти программ (Flash) (адрес 0x7800 для микроконтроллера ATmega328p). Загрузчик проверяет, есть ли связь с Arduino IDE, а затем передаёт управление по адресу 0x0000 памяти программ, где расположен код скетча.

Таким образом, чтобы перезагрузить Arduino программным способом (теплый рестарт или soft reset), достаточно добавить в скетч функцию программного сброса:

Вызов этой функции приведёт к программному рестарту скетча Arduino.

Устройства кейса в Arduino Uno

Arduino Uno R3 — вид спереди Arduino Uno R3 — вид сзади Arduino Uno R2 — вид спереди Arduino Uno SMD Arduino Uno — вид спереди Arduino Uno — вид сзади

Общие сведения

Arduino – это платформа для прототипирования электронных интерактивных объектов, состоящая из двух простых в использовании составляющих:

1. Аппаратные средства, а именно печатные платы Arduino.

2. Программное обеспечение — Arduino Software (IDE).

Благодаря тому, что архитектура печатных плат и программное обеспечение являются полностью открытыми, платформа приобрела большую популярность, что послужило причиной появления большого количества клонов оригинальных печатных плат, всевозможных датчиков и других аппаратных средств совместимых с Arduino. Здесь нужно сразу отметить, что неоригинальные платы работают ничуть не хуже оригинальных, так что можете не бояться их приобретать. Кроме того появились альтернативные средства разработки, в том числе и графические, такие как Ardublock и miniBloq (подробнее см. в статье «Конструкторы программируемых роботов»).

Arduino Uno — это устройство на основе микроконтроллера ATmega328 (datasheet). В его состав входит все необходимое для удобной работы с микроконтроллером: 14 цифровых входов/выходов (из них 6 могут использоваться в качестве ШИМ-выходов), 6 аналоговых входов, кварцевый резонатор на 16 МГц, разъем USB, разъем питания, разъем для внутрисхемного программирования (ICSP) и кнопка сброса. Для начала работы с уcтройством достаточно просто подать питание от AC/DC-адаптера или батарейки, либо подключить его к компьютеру посредством USB-кабеля.

В отличие от всех предыдущих плат Ардуино, Uno в качестве преобразователя интерфейсов USB-UART использует микроконтроллер ATmega16U2 (ATmega8U2 до версии R2) вместо микросхемы FTDI.

На плате Arduino Uno версии R2 для упрощения процесса обновления прошивки добавлен резистор, подтягивающий к земле линию HWB микроконтроллера 8U2.

Изменения на плате версии R3 перечислены ниже:

  • Распиновка 1.0: добавлены выводы SDA и SCL (возле вывода AREF), а также два новых вывода, расположенных возле вывода RESET. Первый — IOREF — позволяет платам расширения подстраиваться под рабочее напряжение Ардуино. Данный вывод предусмотрен для совместимости плат расширения как с 5В-Ардуино на базе микроконтроллеров AVR, так и с 3.3В-платами Arduino Due. Второй вывод ни к чему не подсоединен и зарезервирован для будущих целей.
  • Улучшена помехоустойчивость цепи сброса.
  • Микроконтроллер ATmega8U2 заменен на ATmega16U2.

«Uno» (в переводе с итальянского — «один») назван по случаю предстоящего выпуска Arduino 1.0. Совместно с Arduino 1.0 данные устройства будут базовыми версиями Ардуино. Uno — эталонная модель платформы Arduino и является последней в серии USB-плат; для сравнения с предыдущими версиями, см. список плат Arduino.

Характеристики

МикроконтроллерATmega328Рабочее напряжение5ВНапряжение питания (рекомендуемое)7-12ВНапряжение питания (предельное)6-20ВЦифровые входы/выходы14 (из них 6 могут использоваться в качестве ШИМ-выходов)Аналоговые входыМаксимальный ток одного вывода40 мАМаксимальный выходной ток вывода 3.3V50 мАFlash-память32 КБ (ATmega328) из которых 0.5 КБ используются загрузчикомSRAM2 КБ (ATmega328)EEPROM1 КБ (ATmega328)Тактовая частота16 МГц

Схема и исходный проект

Файлы EAGLE: arduino-uno-Rev3-reference-design.zip (ПРИМЕЧАНИЕ: совместимо с версиями Eagle не ниже 6.0)

Примечание: В файлах проекта Ардуино могут фигурировать микроконтроллеры ATmega8, 168 или 328. Например, в последних моделях используется микроконтроллер ATmega328, но на схеме может быть указан микроконтроллер ATmega8. Это не является ошибкой, поскольку все три микросхемы полностью совместимы между собой по выводам.

Питание

Arduino Uno может быть запитан от USB либо от внешнего источника питания — тип источника выбирается автоматически.

В качестве внешнего источника питания (не USB) может использоваться сетевой AC/DC-адаптер или аккумулятор/батарея. Штекер адаптера (диаметр — 2.1мм, центральный контакт — положительный) необходимо вставить в соответствующий разъем питания на плате. В случае питания от аккумулятора/батареи, ее провода необходимо подсоединить к выводам Gnd и Vin разъема POWER.

Напряжение внешнего источника питания может быть в пределах от 6 до 20 В. Однако, уменьшение напряжения питания ниже 7В приводит к уменьшению напряжения на выводе 5V, что может стать причиной нестабильной работы устройства. Использование напряжения больше 12В может приводить к перегреву стабилизатора напряжения и выходу платы из строя. С учетом этого, рекомендуется использовать источник питания с напряжением в диапазоне от 7 до 12В.

Ниже перечислены выводы питания, расположенные на плате:

  • VIN. Напряжение, поступающее в Arduino непосредственно от внешнего источника питания (не связано с 5В от USB или другим стабилизированным напряжением). Через этот вывод можно как подавать внешнее питание, так и потреблять ток, когда устройство запитано от внешнего адаптера.
  • 5V. На вывод поступает напряжение 5В от стабилизатора напряжения на плате, вне независимости от того, как запитано устройство: от адаптера (7 — 12В), от USB (5В) или через вывод VIN (7 — 12В). Запитывать устройство через выводы 5V или 3V3 не рекомендуется, поскольку в этом случае не используется стабилизатор напряжения, что может привести к выходу платы из строя.
  • 3V3. 3.3В, поступающие от стабилизатора напряжения на плате. Максимальный ток, потребляемый от этого вывода, составляет 50 мА.
  • GND. Выводы земли.
  • IOREF. Этот вывод предоставляет платам расширения информацию о рабочем напряжении микроконтроллера Ардуино. В зависимости от напряжения, считанного с вывода IOREF, плата расширения может переключиться на соответствующий источник питания либо задействовать преобразователи уровней, что позволит ей работать как с 5В, так и с 3.3В-устройствами.

Читайте также:  При активации строки управляемые формы 1с

Память

Объем флеш-памяти ATmega328 составляет 32 КБ (из которых 0.5 КБ используются загрузчиком). Микроконтроллер также имеет 2 КБ памяти SRAM и 1 КБ EEPROM (из которой можно считывать или записывать информацию с помощью библиотеки EEPROM).

Входы и выходы

С использованием функций pinMode(), digitalWrite() и digitalRead() каждый из 14 цифровых выводов может работать в качестве входа или выхода. Уровень напряжения на выводах ограничен 5В. Максимальный ток, который может отдавать или потреблять один вывод, составляет 40 мА. Все выводы сопряжены с внутренними подтягивающими резисторами (по умолчанию отключенными) номиналом 20-50 кОм. Помимо этого, некоторые выводы Ардуино могут выполнять дополнительные функции:

  • Последовательный интерфейс: выводы 0 (RX) и 1 (TX). Используются для получения (RX) и передачи (TX) данных по последовательному интерфейсу. Эти выводы соединены с соответствующими выводами микросхемы ATmega8U2, выполняющей роль преобразователя USB-UART.
  • Внешние прерывания: выводы 2 и 3. Могут служить источниками прерываний, возникающих при фронте, спаде или при низком уровне сигнала на этих выводах. Для получения дополнительной информации см. функцию attachInterrupt().
  • ШИМ: выводы 3, 5, 6, 9, 10 и 11. С помощью функции analogWrite() могут выводить 8-битные аналоговые значения в виде ШИМ-сигнала.
  • Интерфейс SPI: выводы 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). С применением библиотеки SPI данные выводы могут осуществлять связь по интерфейсу SPI.
  • Светодиод: 13.Встроенный светодиод, подсоединенный к выводу 13. При отправке значения HIGH светодиод включается, при отправке LOW — выключается.

В Arduino Uno есть 6 аналоговых входов (A0 — A5), каждый из которых может представить аналоговое напряжение в виде 10-битного числа (1024 различных значения). По умолчанию, измерение напряжения осуществляется относительно диапазона от 0 до 5 В. Тем не менее, верхнюю границу этого диапазона можно изменить, используя вывод AREF и функцию analogReference(). Помимо этого, некоторые из аналоговых входов имеют дополнительные функции:

  • TWI: вывод A4 или SDA и вывод A5 или SCL. С использованием библиотеки Wire данные выводы могут осуществлять связь по интерфейсу TWI.

Помимо перечисленных на плате существует еще несколько выводов:

  • AREF. Опорное напряжение для аналоговых входов. Может задействоваться функцией analogReference().
  • Reset.Формирование низкого уровня (LOW) на этом выводе приведет к перезагрузке микроконтроллера. Обычно этот вывод служит для функционирования кнопки сброса на платах расширения

Смотрите также соответствие выводов Arduino и ATmega328. Распиновка для микроконтроллеров ATmega8, 168 и 328 идентична.

Связь

Arduino Uno предоставляет ряд возможностей для осуществления связи с компьютером, еще одним Ардуино или другими микроконтроллерами. В ATmega328 имеется приемопередатчик UART, позволяющий осуществлять последовательную связь посредством цифровых выводов 0 (RX) и 1 (TX). Микроконтроллер ATmega16U2 на плате обеспечивает связь этого приемопередатчика с USB-портом компьютера, и при подключении к ПК позволяет Ардуино определяться как виртуальный COM-порт. Прошивка микросхемы 16U2 использует стандартные драйвера USB-COM, поэтому установка внешних драйверов не требуется. На платформе Windows необходим только соответствующий .inf-файл. В пакет программного обеспечения Ардуино входит специальная программа, позволяющая считывать и отправлять на Ардуино простые текстовые данные. При передаче данных через микросхему-преобразователь USB-UART во время USB-соединения с компьютером, на плате будут мигать светодиоды RX и TX. (При последовательной передаче данных посредством выводов 0 и 1, без использования USB-преобразователя, данные светодиоды не задействуются).

Библиотека SoftwareSerial позволяет реализовать последовательную связь на любых цифровых выводах Arduino Uno.

В микроконтроллере ATmega328 также реализована поддержка последовательных интерфейсов I2C (TWI) и SPI. В программное обеспечение Ардуино входит библиотека Wire, позволяющая упростить работу с шиной I2C; для получения более подробной информации см. документацию. Для работы с интерфейсом SPI используйте библиотеку SPI.

Программирование

Arduino Uno программируется с помощью программного обеспечения Ардуино (скачать). Для этого из меню Tools > Board необходимо выбрать «Arduino Uno» с микроконтроллером, соответствующим вашей плате. Для получения более подробной информации см. справку и примеры.

ATmega328 в Arduino Uno выпускается с прошитым загрузчиком, позволяющим загружать в микроконтроллер новые программы без необходимости использования внешнего программатора. Взаимодействие с ним осуществляется по оригинальному протоколу STK500 (описание, заголовочные файлы C).

Тем не менее, микроконтроллер можно прошить и через разъем для внутрисхемного программирования ICSP (In-Circuit Serial Programming), не обращая внимания на загрузчик; более подробно об этом см. соответствующие инструкции.

Исходный код прошивки микроконтроллера ATmega16U2 (или 8U2 на платах версии R1 и R2) находится в свободном доступе. Прошивка ATmega16U2/8U2 включает в себя DFU-загрузчик (Device Firmware Update), позволяющий обновлять прошивку микроконтроллера. Для активации режима DFU необходимо:

  • На платах версии R1: замкнуть перемычку на обратной стороне платы (возле изображения Италии), после чего сбросить 8U2.
  • На платах версий R2 и выше — для упрощения перехода в режим DFU присутствует резистор, подтягивающий к земле линию HWB микроконтроллера 8U2/16U2.

Читайте также:  Где находится фильтр в стиральной машине канди

После перехода в DFU-режим для загрузки новой прошивки можно использовать программное обеспечение Atmel’s FLIP (для Windows) или DFU programmer (для Mac OS X и Linux). Альтернативный вариант — прошить микроконтроллер через разъем для внутрисхемного программирования ISP с помощью внешнего программатора, однако в этом случае DFU-загрузчик затрется. Для получения более подробной информации см. эти инструкции, составленные пользователями.

Автоматический (программный) сброс

Чтобы каждый раз перед загрузкой программы не требовалось нажимать кнопку сброса, Arduino Uno спроектирован таким образом, который позволяет осуществлять его сброс программно с подключенного компьютера. Один из выводов ATmega8U2/16U2, участвующий в управлении потоком данных (DTR), соединен с выводом RESET микроконтроллера ATmega328 через конденсатор номиналом 100 нФ. Когда на линии DTR появляется ноль, вывод RESET также переходит в низкий уровень на время, достаточное для перезагрузки микроконтроллера. Данная особенность используется для того, чтобы можно было прошивать микроконтроллер всего одним нажатием кнопки в среде программирования Ардуино. Такая архитектура позволяет уменьшить таймаут загрузчика, поскольку процесс прошивки всегда синхронизирован со спадом сигнала на линии DTR.

Однако эта система может приводить и к другим последствиям. При подключении Uno к компьютерам, работающим на Mac OS X или Linux, его микроконтроллер будет сбрасываться при каждом соединении программного обеспечения с платой. После сброса на Arduino Uno активизируется загрузчик на время около полсекунды. Несмотря на то, что загрузчик запрограммирован игнорировать посторонние данные (т.е. все данные, не касающиеся процесса прошивки новой программы), он может перехватить несколько первых байт данных из посылки, отправляемой плате сразу после установки соединения. Соответственно, если в программе, работающей на Ардуино, предусмотрено получение от компьютера каких-либо настроек или других данных при первом запуске, убедитесь, что программное обеспечение, с которым взаимодействует Ардуино, осуществляет отправку спустя секунду после установки соединения.

На плате Uno существует дорожка (отмеченная как «RESET-EN»), разомкнув которую, можно отключить автоматический сброс микроконтроллера. Для повторного восстановления функции автоматического сброса необходимо спаять между собой выводы, расположенные по краям этой дорожки. Автоматический сброс также можно выключить, подключив резистор номиналом 110 Ом между выводом RESET и 5В; для получения более подробной информации см. соответствующую ветку форума.


Речь пойдет о том, как держать Arduino всегда в работоспособном состоянии. Механизм watchdog встроен в контроллеры Atmega, но, к сожалению, не всякий загрузчик (bootloader) Arduino правильно обрабатывает эту функцию. Попробуем разобраться с этой проблемой.

Итак, что такое watchdog? Простыми словами — это встроенный таймер на определенное время (до 8 сек в зависимости от чипа), который можно запустить программно. Как только таймер «дотикает» до нуля, контроллер подает правильный сигнал сброса (RESET) и всё устройство уходит в hard перезагрузку. Самое главное, что этот таймер можно сбрасывать в начальное состояние также программным способом.

  • Правильный сигнал сброса — достаточный по длительности для того, чтобы контроллер начал перегружаться. Иногда есть соблазн подключить к RST входу какой-либо цифровой выход Arduino и устанавливать его в 0 когда надо перегрузиться. Это плохой подход к решению проблемы, т.к. такого сигнала может быть недостаточно по времени, хотя и не исключено, что в некоторых случаях это тоже будет работать..
  • hard перезагрузка это самая настоящая перезагрузка, которая происходит при нажатии на кнопку RESET. Дело в том, что есть еще понятие soft перезагрузки — это программный переход на 0-вой адрес. В принципе, это тоже полезная вещь, но с помощью нее невозможно перегрузить зависший контроллер Ethernet или взглюкнувший LCD.

Короче говоря, встроенный watchdog это как раз то, что нужно и без дополнительных схем, пайки и соединений.

Функции Watchdog

Чтобы использовать функции Watchdog нужно подключить к проекту стандартную библиотеку:

Теперь нам доступны следующие три функции:

1. Запуск таймера watchdog:

Таймер будет считать ровно столько, сколько указано в константе. По истечении этого времени произойдет перезагрузка.

2. Сброс таймера watchdog:

Думаю, понятно для чего нужна эта функция — пока вы вызываете ее, контроллер не сбросится. Как только система зависнет и эта функция вызываться перестанет, то по истечении заданного периода произойдет перезагрузка.

3. Отключение watchdog:

Отключение таймера watchdog.

Собственно, на этом можно было бы и закончить наше повествование о watchdog… но дело в том, что все это работает только в Arduino Uno, а на Arduino Mega, Mini и Nano все это работает ровно наоборот, т.е. не работает совсем 🙂

Почему watchdog не работает на большинстве современных плат Arduino

Дело в том, что после перезагрузки, которая была вызвана watchdog, контроллеры последних выпусков оставляют включенным watchdog на минимальный период, т.е. 15ms. Это нужно для того, чтобы программа как-то узнавала, что предыдущая перезагрузка была по watchdog. Поэтому первоочередная задача загрузчика (или вашей программы, если она запускается первой) — сохранить информацию о том, что перезагрузка была «неожиданной» и сразу же выключить watchdog. Если этого не сделать, то система уйдет в bootloop, т.е. будет вечно перегружаться.

Как известно, в Arduino есть специальный загрузчик, который выполняется в первую очередь после перезагрузки системы. И, к огромному сожалению, стандартный загрузчик не сбрасывает watchdog! Таким образом, система заходит в жестокий bootloop (состояние «crazy led», при котором светодиод на 13-м пине мигает как сумасшедший).

Читайте также:  Китайские браузеры на русском языке

Пути решения проблемы

Если посмотреть на исходники стандартного загрузчика (они есть в поставке платформы), то код отключения watchdog есть (!), но этот код вынесен под условную компиляцию и, по всей видимости, стандартный загрузчик скомпилирован без поддержки watchdog. По крайней мере в пакете платформы версии 1.5.2 (последней на момент написание статьи) дело обстоит именно так.

Для решения проблемы я даже прочитал man-ы самой платформы (:) и вроде бы там описана эта проблема и даже приведен код, который должен сделать всех счастливыми:

Здесь описывается функция get_mcusr(), которая должна вызываться сразу после сброса. Это достигается макросом «__attribute__((section(«.init3″)))». Я пробовал прописывать эту функцию во все секции, которые только возможно — да, она действительно запускается до функции setup() из скетча, но, к сожалению, гораздо позже 15ms (минимальная константа watchdog) после сброса…

Короче говоря, как я ни рыл интернет в поисках легкого решения проблемы, так ничего найдено не было. Я нашел только один способ заставить watchdog работать — перепрошить загрузчик… чем мы сейчас и займемся.

Проверка работоспособности watchdog

Прежде чем что-то прошивать, нужно проверить — вдруг ваша Arduino поддерживает watchdog. Для этого я написал небольшой скетч для теста. Просто залейте его, откройте монитор порта и смотрите, что будет происходить.

После перезагрузки (или подключения монитора к порту) встроенный светодиод мигнет, сигнализируя о том, что запустился загрузчик. Далее в секции setup происходит включение watchdog с таймером на 8 сек. После этого светодиод отсчитает нам это время и должна произойти перезагрузка.

Далее начинается самое интересное — если перезагрузка произошла и все повторяется в такой же последовательности, то вы имеете на руках Arduino, в которой загрузчик правильно обрабатывает watchdog. Если же после перезагрузки светодиод на 13-м пине начинает бесконечно мигать, то значит загрузчик не поддерживает watchdog. Здесь даже кнопка сброса не поможет. Для последующей прошивки нужно плату отключать от питания и после включения успеть прошить до первой перезагрузки.

Я протестировал 4 вида плат и только загрузчик в Arduino Uno сработал так как надо:

Watchdog не поддерживается загрузчиком:
Watchdog поддерживается загрузчиком:

Как легче всего прошить новый загрузчик?

Прошивать загрузчик в Arduino можно с помощью отдельных программаторов, а можно собрать свой программатор с помощью той же самой Arduino. Т.е. любую плату Arduino можно превратить в программатор, залив туда специальный скетч.

Я не буду в этой статье описывать все премудрости создания программатора на основе Arduino, т.к. эта тема довольно подробно описана в интернете. В качестве программатора я использовал Arduino Uno. Как известно, прошивка производится через отдельный разъем ICSP, который есть почти на всех платах. В случае прошивки Arduino Pro Mini, у которого нет IСSP, подключение производится непосредственно к выводам.


Где взять загрузчик, который поддерживает watchdog?

Эта глава напоминает танцы с бубном и скорее всего можно сделать все как-то проще, но, увы, у меня по-другому не получилось.

Рекомендуется использовать загрузчики из пакета optiboot. В принципе, эти загрузчики идут в инсталляции самой платформы Arduino, но лучше скачать и установить последнюю версию optiboot отсюда. Установка заключается в двух шагах (возможно, это можно сделать как-то по-другому):

  1. Папка bootloadersoptiboot перезаписывается в C:Program Files (x86)Arduinohardwarearduinoavrootloadersoptiboot
  2. Файл boards.txt дописывается к файлу C:Program Files (x86)Arduinohardwarearduinoavroards.txt

Естественно, папка установки платформы Arduino у вас может быть другой.

Далее перегружается среда разработки и в меню Сервис/Плата можно наблюдать новые платы с пометкой [optiboot]. К сожалению, при выборе этих плат происходят какие-то непонятные ошибки компиляции и появляются всякие другие странности… поэтому делаем еще проще. Открываем в любом текстовом редакторе файл C:Program Files (x86)Arduinohardwarearduinoavroards.txt и меняем следующие строчки:

Для Arduino Nano:
menu.cpu.nano.atmega328.bootloader.file=optiboot/optiboot_atmega328.hex

Для Arduino Mini:
menu.cpu.mini.atmega328.bootloader.file=optiboot/optiboot_atmega328.hex

Следующая проблема в том, что загрузчика optiboot для платы Arduino Mega не существует в природе, т.к. в Mega больше памяти и используется другой протокол. Поэтому мы используем стандартный, но модифицированный загрузчик, который качаем отсюда. Файл переименовываем в stk500boot_v2_mega2560_2.hex и записываем в папку C:Program Files (x86)Arduinohardwarearduinoavrootloadersstk500v2.

Далее меняем в уже знакомом файле boards.txt следующую строчку:
mega2560.bootloader.file=stk500v2/stk500boot_v2_mega2560_2.hex

Не пугайтесь, что файл модифицированной прошивки для Mega в 2 раза меньше стандартного — так вроде бы должно быть.

Процесс прошивки

После всех изменений можно прошивать загрузчики, выбирая в меню плат обычные платы (не [optiboot]!). В этом случае прошиваться будут именно те файлы hex, которые мы указали в файле board.txt.
Процесс прошивки может не стартовать и выдаваться ошибка:

Для решения этой проблемы откройте скетч программатора и в секции setup выберите другую скорость последовательного порта.
Во время заливки в Arduino Mega может появляться ошибка, которую следует игнорировать:

Заключительные манипуляции

Загрузчики optiboot имеют еще одну особенность — они увеличивают скорость загрузки скетчей, поэтому при использовании плат с optiboot нужно внести соответствующие изменения в boards.txt:

Для Arduino Nano:
menu.cpu.nano.atmega328.upload.speed=115200
Для Arduino Mini:
menu.cpu.mini.atmega328.upload.speed=115200

Предыдущую скорость порта лучше тоже запомнить, т.к. ее нужно будет использовать на платах со стандартными загрузчиками. Если такие изменения не сделать, то процессе заливки скетчей будет выдаваться ошибка, типа такой:

9726552